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Maximal left regular submonoids and
right regular submonoids of Hypg(n)*
S. Phuapong and A. Boonmee!

Abstract. A generalized hypersubstitution of type 7 = (n) is a
mapping which maps each n—ary operation symbol to a term which
does not necessarily preserve the arity. For every generalized hyper-
substitution can be extended to a mapping defined on the set of all
terms of type 7 = (n). Then we can define a binary operation on
the set of all generalized hypersubstitutions of type 7 = (n) and it
turns out that the set together with this binary operation forms a
monoid. The concepts of left regular and right regular elements are
important role in semigroup theory. In this paper, we characterize
the set of all left regular and the set of all right regular elements of
the monoid of all generalized hypersubstitutions of type 7 = (n) and
we determine all maximal left regular submoniods and all maximal
right regular submoniods of this monoid.
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1. Introduction and Preliminaries

The notions of hyperidentities and hypervarieties of a given type 7
without nullary operations originated by J.Aczel [1], V.D. Belousov [2],
W.D. Neumann [9] and W. Taylor [16]. The main tool used to study hy-
peridentities and hypervarieties is the concept of a hypersubstitution which
was introduced by W. Taylor [16]. The notation of a hypersubstution was
originated by K. Denecke, D. Lau, R. Poschel and D. Schweigert [6].
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In 2000, S. Leeratanavalee and K. Denecke generalized the concepts
of a hypersubstitution and a hyperidentity to the concepts of a generalized
hypersubstitution and a strong hyperidentity, respectively [8]. The set of
all generalized hypersubstitutions together with a binary operation forms

a monoid.

All regular elements of the monoid of all generalized hypersustitu-
tions of type 7 = (2) was studied by W. Puninagool and S. Leeratanavalee
[11]. All idempotent and regular elements of the monoid of all general-
ized hypersustitutions of type 7 = (3) was studied by S. Sudsanit and S.

Leeratanavalee [11].

In 2010, W. Puninagool and S. Leeratanavalee characterized all idem-
potent and regular elements of the monoid of all generalized hypersusti-
tutions of type 7 = (n) [13]. In 2014, S. Sudsanit, S. Leeratanavalee and
W. Puninagool characterized left-right regular elements of the monoid of
all generalized hypersustitutions of type 7 = (2) [13]. The set of all com-
pletely regular elements of this monoid of type 7 = (n) was determined
by A. Boonmee and S. Leeratanavalee [4]. In general, a completely regular

element is both left regular and right regular.

In the present paper, we used the concepts of a regular element and a
completely regular element as tools to determine the set of all left regular
and right regular elements of the monoid of all generalized hypersubstitu-
tions of type 7 = (n). Furthermore, we show that the set of all completely
regular elements, the set of all left regular and the set of all right regular
elements of the monoid of all generalized hypersubstitutions of type 7 = (n)
are the same. Finally, we determine all maximal left regular submonoids

and all maximal right regular submonoids of this monoid.

One of the most important tools in the study of universal algebra and
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theoretical computer science is the notion of terms. Let 7 = (n;)ier, n; € N,
be a type with operation symbols f; for each i € I. Let X := {x1,22,...}
be a countably infinite set of variables and X,, := {x1,2,...,2,} be an
n—element alphabet. An n—ary term of type 7, for simply an n—ary term,

is defined inductively as follows:
(i) The variables x1,xa, ..., x,, are n—ary terms.

(i) If t1,ta,...,tn, are n—ary terms of type 7 then f;(t1,ts,...,t,,) is an

n—ary term.

Let W.(X,,) be the set of all n—ary terms. W,(X,) is the smallest

set which contains x1, za, ..., z,, and is closed under finite application of (ii).

Let W, (X) = U W-(X,,) and called the set of all terms of type 7.
n=1

A generalized hypersubstitution of type 7 is a mapping o : {fi|i €
I} — W.(X) which does not necessarily preserve the arity. The set of all
generalized hypersubstitutions of type 7 denoted by Hypa(7). To define a
binary operation on this set, we need the concept of a generalized superpo-
sition of terms S™ : W, (X)™*+! — W, (X) which is defined by the following

steps:
(i) ft=xj, 1 <j<m,then S™(t,t1,....tnm) = S™(xj,t1,.... tm) := 1.
(i) If t = z;, m < j € N, then S™(t,t1,...,tm) = S™ (), t1, ..., tm) == ;.

(111) Ift = fi(817527 ---7Sni)a then
STt o tim) = Fi(S™(S1, E1s oo tim) s oons ST (Sms sty s Em)-

For each generalized hypersubstitution o can be extended to a map-

ping & : W, (X) — W (X) defined as follows:

(i) 6lz] =2 € X,



170 S. Phuapong and A. Boonmee

&[fi(th tQ, ceny tni)} = Sn1 (O’(fz), 5’[t1], ceey (A)'[tnl]),
for any n;—ary operation symbol f; and supposed that 6[t;], 1 <j <

n; are already defined.

A binary operation og on Hypg(7) defined by 010509 := 61009 where
o denotes the usual composition of mappings. In [8], S. Leeratanavalee and
K. Denecke showed that the set of all generalized hypersubstituions forms
a monoid under the operation og where the identity o;q is a generalized

hypersubstitution which maps each n; —ary operation symbol f; to the term

fi(z1, 22y oy p,).
2. Main results

At first, we introduce some notations which will be used throughout
of this paper. Let 7 = (n) be a type with an n—ary operation symbol f
and let t € W, (X), we denote

ot := the generalized hypersubstitution o of type 7 = (n) which maps

f to the term ¢,
var(t) := the set of all variables occurring in the term ¢,
vb!(z):= the number of occurrences of a variable z in the term ¢,
op(t):= the number of all operation symbols occurring in the term ¢.

For a term ¢ € W(,)(X), a subterm of ¢ is defined inductively by the

following:
(i) Every variable « € var(t) is a subterm of .
(ii) If t = f(t1, ..., tn), then t1,...,t, and t itself are subterms of ¢.
We denote the set of all subterms of ¢ by sub(?).

For each t € W(,,)(X) \ X where t = f(t1,...,t,) for some t1,....t, €
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Wiy (X). Let my; : Wiy (X) \ X — Wiy (X) with 7, (t) = 7, (f(te, ...,
tn)) = ti,. Maps m;, are defined for 4; = 1,2, ...,n. Let s¥) be a subterm s
occurring in the j** order of ¢ (from the left). If s¢) = 7; o... o (t) for
some m € N, then the sequence of s) in ¢ denoted by Seqt(s(j)) and the
depth of s¢) in t denoted by deptht(s(j)) such that

seqt(s9) = (i1, ...,im) and deptht(sY9)) =m.

Let s € sub(t) where s # t. We denote the set of all a sequences of s
in term ¢ by seq®(s), then

seq'(s) = {seq' (sY))| j € N}.
Example 2.1. Let t € W4)(X) \ X where
t = f(za, f(s, f(x4,8,8,23),71,75),8,5)
for some s € W4y (X). Then
t = flaa, f(sW, f(x4,5P), 5P 23), 21, 25), s, )
and then
seqt(s(l)) =(2,1)
seqt(s?) = (2,2,2) deptht(s®) =3
seqt(s®) = (2,2,3)
seq'(sW) = (3)
and seq'(s) = {(2,1),(2,2,2),(2,2,3),(3)}.

Definition 2.2 ([11]). Let S be a semigroup and a be an element in S.
Then

a is called regular iff there exists b € S such that aba = a,
a is called completely regular iff there exists b € S such that aba = a

and ab = ba.
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Let o, € Hypg(n), we denote
Ry :={og,|zi € X};
Ry := {o¢|var(t) N X,, = 0};

R3 = {oy|t = f(t1,...,tn) where t;, = xj,,...,t;, = z;, for some

i1, ..., 14m and for distinct ji, ..., jm € {1,...,n} and var(t)NX,, = {z;,, - -,

3
In 2010, W. Puninagool and S. Leeratanavalee showed that U R; is
i=1
the set of all regular elements in Hypg(n) [13].

Denote

CR(R3) := {o¢|t € Wy,y(X) \ X such that t = f(t1,...,t,) then there

exist ti,,...,t;, € {t1,...,tn} such that t;;, = x.¢,),....,t:,, = Tr(;,,) Where

tm

7 is a bijective map on {iy, ..., i} and var(t) N X,, = {z,, ..., z;,, }}.

Clearly, CR(R3) C R3. Let CR(Hypg(n)) := CR(R3) UR; URs. In
2013, A. Boonmee and S. Leeratanavalee showed that CR(Hypg(n)) is the
set of all completely regular elements in Hypg(n) [4].

Let t € W,y (X) and i € N which 1 <i <n, an i —most(t) is defined

inductively by the following :
(i) If ¢ is a variable, then i — most(t) = t.
(ii) If t = f(t1,...,tn), then i — most(t) = i — most(t;).
Let 0¢ € Hypg(n) and let § #£ I C {1,...,n}. Denote,

CRi(R3) := {o¢|t = f(2r(1),. -, Tr(n)) Where 7 is a bijective map on
{1,...,n}},

E = {oy|t = f(t1,...,t,) where t;; = x;,,...,t;, = z;, for some

tivy--osti, € {t1,...,tn} and var(t) N X, = {z4,,...,2;, } and if x;, €
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var(ty) for some 4 € {i1,...,in} and k € {1,...,n} \ {é1,...,im}, then
Jj — most(ty) # x;, for all j # 4},

CRi(R3) := {o¢|t = f(t1,...,t,) where t; = x,(;) for all i € [ and 7
is a bijective map on I, var(t) N X, = {x,|i € I}},

CR}(R3) := {oy|t = f(t1,...,t,) where t; = x.(; w(i) € I for all

i €I and ty =z for all k € {1,...,n}\ I and 7 is a bijective map on
I} and denote,

(MCR)HypG(n) = Rl U Rg @] CRl(R:g),
(MCRl)HypG(n) =RiUR;UE,
(MCRI)HypG(n) =RiURyU CR[(Rg) U CR/I(Rg) U {Uid}'

In 2019, P. Kunama and S. Leeratanavalee [7] showed that
(MCOR)mype(ny and (MCR1) gypen) U (MCRT) gyps(n) are all maximal
completely regular submonoids of Hypg(n).

Defintion 2.3 [10]. Let S be a semigroup and a be an element in S. Then
a is called left(right) reqular iff a € Sa® (a € a?8S).

Theorem 2.4 [10]. An element a of a semigroup S is completely reqular

if and only if a is both left regular and right regular.

Proposition 2.5 [4]. Let t = f(t1,...,t,) where t;, = zj,,....t;,, = xj,,
for some i1,... 0m, J1,---sdm € {1,...,n}. If there exists | € {1,...,m}
such that t;, = xj, where j; & {i1,....,im}, then o # 050G o} for all

os € Hypa(n).

Corollary 2.6 [4]. If oy € R3 \ CR(R3), then oy is not left regular in
Hypa(n).

Proposition 2.7. Let t = f(t1,...,tn) where t;;, = x;,,...,t;,, = x;,, for

SOMe 1,y dmy J1s---rJm € {1,...,n}. If there exists | € {1,...,m} such
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that t;, = xj, where j; ¢ {i1,....im}, then oy # 0f og o5 for all o5 €
Hype(n).

Proof. Assume that the condition holds. Consider

(O’t oG O't)(f) = é’t[t] = Sn(f(tl, ...7tn),6t[t1], ,&t[tn]) = f(ul, ,Un)

where u; = S™(t;,0¢[t1],...,0¢[tn]) for all i € {1,..,n}, denote (o, o¢
o¢)(f) = u. Since t;, = x;, where j; & {i1,--- ,im}, sy, = S™(xj,, 6¢[ta], - -,

Giltn]) = 04[] S0 wi, € Wiy (X) \ X,

Let 0, € Hypg(n). Next, we will show that oy # 02 og 0s. If s € X,
then 02 og 05 € X. So 04 # 02 og 0. If s = f(s1,82,...,5,) where

51,82, 8n € Wiy (X), then

(UEOGUS)(JC) = (owogos)(f)

= S"(f(u1, ..oy un), 0uls1], oy Gulsn])

= f(wy,...,wp)
where w; = S™(u;, 6u[$1], .o, Oulsn]) for all i € {1,..,n}. Since u; €
W(n)(X) \)(n7 W4, € W(n)(X)\Xn. Hence o; # O'tZ oG Os. O

Corollary 2.8. If oy € R3 \ CR(R3), then oy is not right regular in
Hypa(n).

Proposition 2.9 [12]. Let s,ty,...,t,m € Wo(X). Then

m

op(S™ (5,11, ey tm)) = D vb*(5)op(t;) + op(s)
j=1
Theorem 2.10. If oy € Hypg(n) \ (R1 U Ry U R3), then oy is not right

reqular in Hypg(n).

Proof. Let 0; € Hypg(n) \ (R1 U Ry U R3) where t = f(t1,...,tn).
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Denote
L = {ie{l,.,n}tic X\ X,},
L = {ie{l,..n}t € X,},
Iy = {ie{l,..,n}t; € W(X)\ X}.

Clearly, I, I and I5 are all distinct and I; UILU I3 = {1,...,n}. Then

there exists x; € var(t) for some j € {1,...,n} where z; ¢ {t;|i € I,}.

Suppose that oy = 07 og 05 for some o5 € Hypg(n). By Proposition
2.7, j ¢ I>. So j € I3. Then there exists t; € W(,)(X)\ X such that
op(6¢[t;]) > op(t). Consider

(groco)(f) = S"(f(tr, - tn), 6elta], .., Ge[tn])
= f(ul,...,un),

where u; = S™(t;,6¢[t1], ..., 6¢[tn]) foralli € {1,...,n}. Ifi € I, thenu; = t;
such that u; € X \ X,,. If i € I, then u; € {t;|i € I}, by Proposition 2.7.
If i € I3, then u; € W,y (X) \ X. Choose k € I3 where z; € var(ty). Then
op(tr) > 1, up € Wiy (X) \ X and vb™ (x;)op(6¢[t;]) > op(t). So

n

op(ug) = D ob™ (,)op(du[ty]) + op(te)
> op(t) + op(tx)
> op(t)+1
> op(t).

Hence op(a?) > op(t), i.e. op(c? og 0s) > op(t), which contradicts to
0y = 02 og 0s. Therefore oy is not a right regular element in Hypg(n).

Similarly, if I; = () or I = (), then o, is not a right regular element in

Hypg(n). O

Theorem 2.11 [5]. Let t,s € W, (X)\ X and x; € var(t). Let zgj)

be a wariable x; occurring in the j" order of t (from the left) such that
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©)

K3

segt(x;”’) = (i1, .oy im) for some iy, ...,im € {1,..,n}. Then xgj) € var(0[t])
if and only if x;, € var(s) for all1 <k <m. Let mgj’h) be a variable xz(-j)
occurring in the h'" order of 64[t] (from the left), Then

seqﬁﬂ[t] (xEj’h)) = (i, .-y ai,,)
where a;, is a sequence of natural number ki, ...k, such that (ki,...k,) €

seq®(x;,) for all k € {1,..,m}. Moreover
depth?+!" (xgj’h)) = depths(ac%) + ... + depth® (mi:)

for some lq,....1,, € N where xiz 18 a variable x;, occurring in the lfvh order

of S (from the left) for all k € {1,...,m}.

Theorem 2.12. If o, € Hypa(n)\ (R1UR2UR3), then oy is not left reqular
in Hypg(n).

Proof. Let 0y € Hypa(n) \ (R1 U Re U R3) where t = f(t1, ..., t,). Denote
I, Iy and I3 as in Theorem 2.10.

Suppose that oy = o, og o} for some o, € Hypg(n). By Proposition 2.5,
j € I3. Since z; € var(t) and oy = 05 oG 07, x; € var(os oG o}), i.e.
z; € var(o}f). Let xg-h) be a variable z; occurring in the h'" order of ¢

(from the left) where

deptht(:rg»h)) = min{deptht(:rgz))mg»z) is a variable z; occurring in the z*"
order of t (from the left)}

= m.

Then seq (xgh

)Y = (ky, ko, ..., k) where ky € Iy and ka, ..., km € {1,2,...,n}
and we get x§»h) € var(o?). Fix a:g»h’p) is a variable x;h) occurring in the p'"



Mazimal left reqular submonoids 177
order of o7 (from the left) where
depth"t2 (:c;-h’p)) = min{deptlf"t2 (xﬁh’Q))|x§h’q) is a variable xéh) occurring
in the ¢'"order of ¢ (from the left)}
= min{depth"f xg-s))|a:5-8) is a variable z; occurring in the

(
shorder of o (from the left)}.

By Theorem 2.11, we have xy,, Tk,, ..., Xk, € var(t). By Proposition 2.5

and ki ¢ I, we have xy, ¢ {t;|i € Io}. So xg, € var(t;) for some [ € I3,
ie. deptht(:vzl) > 2 for all r € N such that zj_ is a variable z, occurring

in the rt" order of ¢ (from the left). By Theorem 2.11,

depth?t (&{"")) = depth'(a}) + depth' (2}2) + ... + depth® (x}")
> 24+ (m—1)
> m

where depth?(z)!) is a variable x, occurring in the rth order of t (from the

left) for all ¢ € {1,...,m}. Hence

m < depth";Z (xyb’p))
< min{depth"ﬂOG”t2 (xgs))\xgs) is a variable z; occurring in the s

order of o4 og o} (from the left)},

which contradicts to oy = os0¢ Uf. Therefore o, is not a left regular element
in Hypg(n). Similarly, if I; = § or I, = @, then o is not a left regular
element in Hypg(n). O

Theorem 2.13. CR(Hypg(n)) is the set of all left regular elements in
Hypc(n).

Proof. By Corollary 2.6 and by Theorem 2.12. U
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Theorem 2.14. CR(Hypa(n)) is the set of all right regular elements in
Hype(n).

Proof. By Corollary 2.8 and by Theorem 2.10. O

Theorem 2.15. Let ) # I C {1,...,n}. Then (MCR)gyp,n) and
(MCRl)HypG(n)U (MCRI)HypG(n) are all

mazimal left reqular and all maximal right regular submonoids of Hypg(n).
Proof. By Theorem 2.13, Theorem 2.14 and[7]. O

3. Conclusion

In this paper, we conclude that the set of all completely regular ele-
ments, the set of all left regular elements and the set of all right regular
elements of the monoid of all generalized hypersubstitutions of type 7 = (n)
are the same. In semigroup theory, we know that the set of all completely
regular elements is a subset of the set all intra-regular elements. A. Boon-
mee [3] showed that the set of all completely regular elements and the set
of all intra-regular elements of the monoid of all generalized hypersubstitu-

tions of type 7 = (n) are the same.

It follows that, completely regular, left regular, right regular and intra-
regular of the monoid of all generalized hypersubstitutions of type 7 = (n)
are all equivalent. Moreover, we have (MCR) gype; (n) and (MCR1) grypg (n)U
(MCRI)qyps(n) where ) # I C {1,...,n} are all maximal completely regu-
lar (left regular, right regular and intra-regular) submonoids of the monoids

of all generalized hypersubstitutions of type 7 = (n).
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