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Maximal left regular submonoids and

right regular submonoids of HypG(n)
*

S. Phuapong and A. Boonmee�

Abstract. A generalized hypersubstitution of type τ = (n) is a
mapping which maps each n−ary operation symbol to a term which
does not necessarily preserve the arity. For every generalized hyper-
substitution can be extended to a mapping defined on the set of all
terms of type τ = (n). Then we can define a binary operation on
the set of all generalized hypersubstitutions of type τ = (n) and it
turns out that the set together with this binary operation forms a
monoid. The concepts of left regular and right regular elements are
important role in semigroup theory. In this paper, we characterize
the set of all left regular and the set of all right regular elements of
the monoid of all generalized hypersubstitutions of type τ = (n) and
we determine all maximal left regular submoniods and all maximal
right regular submoniods of this monoid.
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1. Introduction and Preliminaries

The notions of hyperidentities and hypervarieties of a given type τ

without nullary operations originated by J.Aczèl [1], V.D. Belousov [2],

W.D. Neumann [9] and W. Taylor [16]. The main tool used to study hy-

peridentities and hypervarieties is the concept of a hypersubstitution which

was introduced by W. Taylor [16]. The notation of a hypersubstution was

originated by K. Denecke, D. Lau, R. Pöschel and D. Schweigert [6].
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In 2000, S. Leeratanavalee and K. Denecke generalized the concepts

of a hypersubstitution and a hyperidentity to the concepts of a generalized

hypersubstitution and a strong hyperidentity, respectively [8]. The set of

all generalized hypersubstitutions together with a binary operation forms

a monoid.

All regular elements of the monoid of all generalized hypersustitu-

tions of type τ = (2) was studied by W. Puninagool and S. Leeratanavalee

[11]. All idempotent and regular elements of the monoid of all general-

ized hypersustitutions of type τ = (3) was studied by S. Sudsanit and S.

Leeratanavalee [11].

In 2010, W. Puninagool and S. Leeratanavalee characterized all idem-

potent and regular elements of the monoid of all generalized hypersusti-

tutions of type τ = (n) [13]. In 2014, S. Sudsanit, S. Leeratanavalee and

W. Puninagool characterized left-right regular elements of the monoid of

all generalized hypersustitutions of type τ = (2) [13]. The set of all com-

pletely regular elements of this monoid of type τ = (n) was determined

by A. Boonmee and S. Leeratanavalee [4]. In general, a completely regular

element is both left regular and right regular.

In the present paper, we used the concepts of a regular element and a

completely regular element as tools to determine the set of all left regular

and right regular elements of the monoid of all generalized hypersubstitu-

tions of type τ = (n). Furthermore, we show that the set of all completely

regular elements, the set of all left regular and the set of all right regular

elements of the monoid of all generalized hypersubstitutions of type τ = (n)

are the same. Finally, we determine all maximal left regular submonoids

and all maximal right regular submonoids of this monoid.

One of the most important tools in the study of universal algebra and
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theoretical computer science is the notion of terms. Let τ = (ni)i∈I , ni ∈ N,

be a type with operation symbols fi for each i ∈ I. Let X := {x1, x2, ...}

be a countably infinite set of variables and Xn := {x1, x2, ..., xn} be an

n−element alphabet. An n−ary term of type τ , for simply an n−ary term,

is defined inductively as follows:

(i) The variables x1, x2, ..., xn are n−ary terms.

(ii) If t1, t2, ..., tni
are n−ary terms of type τ then fi(t1, t2, ..., tni

) is an

n−ary term.

Let Wτ (Xn) be the set of all n−ary terms. Wτ (Xn) is the smallest

set which contains x1, x2, ..., xn and is closed under finite application of (ii).

Let Wτ (X) :=

∞⋃
n=1

Wτ (Xn) and called the set of all terms of type τ .

A generalized hypersubstitution of type τ is a mapping σ : {fi|i ∈

I} → Wτ (X) which does not necessarily preserve the arity. The set of all

generalized hypersubstitutions of type τ denoted by HypG(τ). To define a

binary operation on this set, we need the concept of a generalized superpo-

sition of terms Sm : Wτ (X)m+1 →Wτ (X) which is defined by the following

steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(t, t1, ..., tm) = Sm(xj , t1, ..., tm) := tj .

(ii) If t = xj , m < j ∈ N, then Sm(t, t1, ..., tm) = Sm(xj , t1, ..., tm) := xj .

(iii) If t = fi(s1, s2, ..., sni
), then

Sm(t, t1, ..., tm) := fi(S
m(s1, t1, ..., tm), ..., Sm(sni

, t1, ..., tm)).

For each generalized hypersubstitution σ can be extended to a map-

ping σ̂ : Wτ (X)→Wτ (X) defined as follows:

(i) σ̂[x] := x ∈ X,
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(ii)

σ̂[fi(t1, t2, ..., tni
)] := Sni(σ(fi), σ̂[t1], ..., σ̂[tni

]),

for any ni−ary operation symbol fi and supposed that σ̂[tj ], 1 ≤ j ≤

ni are already defined.

A binary operation ◦G on HypG(τ) defined by σ1◦Gσ2 := σ̂1◦σ2 where

◦ denotes the usual composition of mappings. In [8], S. Leeratanavalee and

K. Denecke showed that the set of all generalized hypersubstituions forms

a monoid under the operation ◦G where the identity σid is a generalized

hypersubstitution which maps each ni−ary operation symbol fi to the term

fi(x1, x2, ..., xni).

2. Main results

At first, we introduce some notations which will be used throughout

of this paper. Let τ = (n) be a type with an n−ary operation symbol f

and let t ∈Wτ (X), we denote

σt := the generalized hypersubstitution σ of type τ = (n) which maps

f to the term t,

var(t) := the set of all variables occurring in the term t,

vbt(x):= the number of occurrences of a variable x in the term t,

op(t):= the number of all operation symbols occurring in the term t.

For a term t ∈ W(n)(X), a subterm of t is defined inductively by the

following:

(i) Every variable x ∈ var(t) is a subterm of t.

(ii) If t = f(t1, ..., tn), then t1, ..., tn and t itself are subterms of t.

We denote the set of all subterms of t by sub(t).

For each t ∈ W(n)(X) \X where t = f(t1, ..., tn) for some t1, ..., tn ∈
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W(n)(X). Let πil : W(n)(X) \ X → W(n)(X) with πil(t) = πil(f(t1, ...,

tn)) = til . Maps πil are defined for il = 1, 2, ..., n. Let s(j) be a subterm s

occurring in the jth order of t (from the left). If s(j) = πim ◦ ... ◦ πi1(t) for

some m ∈ N, then the sequence of s(j) in t denoted by seqt(s(j)) and the

depth of s(j) in t denoted by deptht(s(j)) such that

seqt(s(j)) = (i1, ..., im) and deptht(s(j)) = m.

Let s ∈ sub(t) where s 6= t. We denote the set of all a sequences of s

in term t by seqt(s), then

seqt(s) = {seqt(s(j))| j ∈ N}.

Example 2.1. Let t ∈W(4)(X) \X where

t = f(x4, f(s, f(x4, s, s, x3), x1, x5), s, x5)

for some s ∈W(4)(X). Then

t = f(x4, f(s(1), f(x4, s
(2), s(3), x3), x1, x5), s(4), x5)

and then

seqt(s(1)) = (2, 1) deptht(s(1)) = 2

seqt(s(2)) = (2, 2, 2) deptht(s(2)) = 3

seqt(s(3)) = (2, 2, 3) deptht(s(3)) = 3

seqt(s(4)) = (3) deptht(s(4)) = 1

and seqt(s) = {(2, 1), (2, 2, 2), (2, 2, 3), (3)}.

Definition 2.2 ([11]). Let S be a semigroup and a be an element in S.

Then

a is called regular iff there exists b ∈ S such that aba = a,

a is called completely regular iff there exists b ∈ S such that aba = a

and ab = ba.
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Let σt ∈ HypG(n), we denote

R1 := {σxi |xi ∈ X};

R2 := {σt|var(t) ∩Xn = ∅};

R3 := {σt|t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for some

i1, . . . , im and for distinct j1, . . . , jm ∈ {1, ..., n} and var(t)∩Xn = {xj1 , · · · ,

xjm}}.

In 2010, W. Puninagool and S. Leeratanavalee showed that

3⋃
i=1

Ri is

the set of all regular elements in HypG(n) [13].

Denote

CR(R3) := {σt|t ∈ W(n)(X) \X such that t = f(t1, ..., tn) then there

exist ti1 , . . . , tim ∈ {t1, . . . , tn} such that ti1 = xπ(i1), ..., tim = xπ(im) where

π is a bijective map on {i1, ..., im} and var(t) ∩Xn = {xi1 , ..., xim}}.

Clearly, CR(R3) ⊂ R3. Let CR(HypG(n)) := CR(R3) ∪ R1 ∪ R2. In

2013, A. Boonmee and S. Leeratanavalee showed that CR(HypG(n)) is the

set of all completely regular elements in HypG(n) [4].

Let t ∈W(n)(X) and i ∈ N which 1 ≤ i ≤ n, an i−most(t) is defined

inductively by the following :

(i) If t is a variable, then i−most(t) = t.

(ii) If t = f(t1, . . . , tn), then i−most(t) = i−most(ti).

Let σt ∈ HypG(n) and let ∅ 6= I ⊂ {1, . . . , n}. Denote,

CR1(R3) := {σt|t = f(xπ(1), . . . , xπ(n)) where π is a bijective map on

{1, . . . , n}},

E := {σt|t = f(t1, . . . , tn) where ti1 = xi1 , . . . , tim = xim for some

ti1 , . . . , tim ∈ {t1, . . . , tn} and var(t) ∩ Xn = {xi1 , . . . , xim} and if xil ∈
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var(tk) for some il ∈ {i1, . . . , im} and k ∈ {1, . . . , n} \ {i1, . . . , im}, then

j −most(tk) 6= xil for all j 6= il},

CRI(R3) := {σt|t = f(t1, . . . , tn) where ti = xπ(i) for all i ∈ I and π

is a bijective map on I, var(t) ∩Xn = {xπ(i)|i ∈ I}},

CR′I(R3) := {σt|t = f(t1, . . . , tn) where ti = xπ(i); π(i) ∈ I for all

i ∈ I and tk = xπ(k) for all k ∈ {1, . . . , n} \ I and π is a bijective map on

I} and denote,

(MCR)HypG(n) := R1 ∪R2 ∪ CR1(R3),

(MCR1)HypG(n) := R1 ∪R2 ∪ E,

(MCRI)HypG(n) := R1 ∪R2 ∪ CRI(R3) ∪ CR′I(R3) ∪ {σid}.

In 2019, P. Kunama and S. Leeratanavalee [7] showed that

(MCR)HypG(n) and (MCR1)HypG(n) ∪ (MCRI)HypG(n) are all maximal

completely regular submonoids of HypG(n).

Defintion 2.3 [10]. Let S be a semigroup and a be an element in S. Then

a is called left(right) regular iff a ∈ Sa2 (a ∈ a2S).

Theorem 2.4 [10]. An element a of a semigroup S is completely regular

if and only if a is both left regular and right regular.

Proposition 2.5 [4]. Let t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm

for some i1, . . . , im, j1, . . . , jm ∈ {1, ..., n}. If there exists l ∈ {1, ...,m}

such that til = xjl where jl /∈ {i1, ..., im}, then σt 6= σs ◦G σ2
t for all

σs ∈ HypG(n).

Corollary 2.6 [4]. If σt ∈ R3 \ CR(R3), then σt is not left regular in

HypG(n).

Proposition 2.7. Let t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for

some i1, . . . , im, j1, . . . , jm ∈ {1, ..., n}. If there exists l ∈ {1, ...,m} such
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that til = xjl where jl /∈ {i1, ..., im}, then σt 6= σ2
t ◦G σs for all σs ∈

HypG(n).

Proof. Assume that the condition holds. Consider

(σt ◦G σt)(f) = σ̂t[t] = Sn(f(t1, ..., tn), σ̂t[t1], ..., σ̂t[tn]) = f(u1, ..., un)

where ui = Sn(ti, σ̂t[t1], ..., σ̂t[tn]) for all i ∈ {1, ..., n}, denote (σt ◦G
σt)(f) = u. Since til = xjl where jl /∈ {i1, · · · , im}, uil = Sn(xjl , σ̂t[t1], · · · ,

σ̂t[tn]) = σ̂t[tjl ]. So uil ∈W(n)(X) \Xn.

Let σt ∈ HypG(n). Next, we will show that σt 6= σ2
t ◦G σs. If s ∈ X,

then σ2
t ◦G σs ∈ X. So σt 6= σ2

t ◦G σs. If s = f(s1, s2, ..., sn) where

s1, s2, ..., sn ∈W(n)(X), then

(σ2
t ◦G σs)(f) = (σu ◦G σs)(f)

= Sn(f(u1, ..., un), σ̂u[s1], ..., σ̂u[sn])

= f(w1, ..., wn)

where wi = Sn(ui, σ̂u[s1], ..., σ̂u[sn]) for all i ∈ {1, ..., n}. Since uil ∈

W(n)(X) \Xn, wil ∈W(n)(X) \Xn. Hence σt 6= σ2
t ◦G σs.

Corollary 2.8. If σt ∈ R3 \ CR(R3), then σt is not right regular in

HypG(n).

Proposition 2.9 [12]. Let s, t1, ..., tm ∈Wτ (X). Then

op(Sm(s, t1, ..., tm)) =

m∑
j=1

vbs(xj)op(tj) + op(s)

Theorem 2.10. If σt ∈ HypG(n) \ (R1 ∪ R2 ∪ R3), then σt is not right

regular in HypG(n).

Proof. Let σt ∈ HypG(n) \ (R1 ∪R2 ∪R3) where t = f(t1, ..., tn).
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Denote

I1 = {i ∈ {1, ..., n}|ti ∈ X \Xn},

I2 = {i ∈ {1, ..., n}|ti ∈ Xn},

I3 = {i ∈ {1, ..., n}|ti ∈W(n)(X) \X}.

Clearly, I1, I2 and I3 are all distinct and I1∪I2∪I3 = {1, ..., n}. Then

there exists xj ∈ var(t) for some j ∈ {1, ..., n} where xj /∈ {ti|i ∈ I2}.

Suppose that σt = σ2
t ◦G σs for some σs ∈ HypG(n). By Proposition

2.7, j /∈ I2. So j ∈ I3. Then there exists tj ∈ W(n)(X) \ X such that

op(σ̂t[tj ]) ≥ op(t). Consider

(σt ◦G σt)(f) = Sn(f(t1, ..., tn), σ̂t[t1], ..., σ̂t[tn])

= f(u1, ..., un),

where ui = Sn(ti, σ̂t[t1], ..., σ̂t[tn]) for all i ∈ {1, ..., n}. If i ∈ I1, then ui = ti

such that ui ∈ X \Xn. If i ∈ I2, then ui ∈ {ti|i ∈ I2}, by Proposition 2.7.

If i ∈ I3, then ui ∈W(n)(X) \X. Choose k ∈ I3 where xj ∈ var(tk). Then

op(tk) ≥ 1, uk ∈W(n)(X) \X and vbtk(xj)op(σ̂t[tj ]) ≥ op(t). So

op(uk) =

n∑
p=1

vbtk(xp)op(σ̂t[tp]) + op(tk)

≥ op(t) + op(tk)

≥ op(t) + 1

> op(t).

Hence op(σ2
t ) > op(t), i.e. op(σ2

t ◦G σs) > op(t), which contradicts to

σt = σ2
t ◦G σs. Therefore σt is not a right regular element in HypG(n).

Similarly, if I1 = ∅ or I2 = ∅, then σt is not a right regular element in

HypG(n).

Theorem 2.11 [5]. Let t, s ∈ W(n)(X) \ X and xi ∈ var(t). Let x
(j)
i

be a variable xi occurring in the jth order of t (from the left) such that
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segt(x
(j)
i ) = (i1, ..., im) for some i1, ..., im ∈ {1, .., n}. Then x(j)i ∈ var(σ̂s[t])

if and only if xik ∈ var(s) for all 1 ≤ k ≤ m. Let x
(j,h)
i be a variable x

(j)
i

occurring in the hth order of σ̂s[t] (from the left), Then

seqσ̂s[t](x
(j,h)
i ) = (ai1 , ..., aim)

where aik is a sequence of natural number k1, ...kz such that (k1, ...kz) ∈

seqs(xik) for all k ∈ {1, ..,m}. Moreover

depthσ̂s[t](x
(j,h)
i ) = depths(xl1i1) + ...+ depths(xlmim)

for some l1, ..., lm ∈ N where xlkik is a variable xik occurring in the lthk order

of S (from the left) for all k ∈ {1, ...,m}.

Theorem 2.12. If σt ∈ HypG(n)\(R1∪R2∪R3), then σt is not left regular

in HypG(n).

Proof. Let σt ∈ HypG(n) \ (R1 ∪R2 ∪R3) where t = f(t1, ..., tn). Denote

I1, I2 and I3 as in Theorem 2.10.

Suppose that σt = σs ◦G σ2
t for some σs ∈ HypG(n). By Proposition 2.5,

j ∈ I3. Since xj ∈ var(t) and σt = σs ◦G σ2
t , xj ∈ var(σs ◦G σ2

t ), i.e.

xj ∈ var(σ2
t ). Let x

(h)
j be a variable xj occurring in the hth order of t

(from the left) where

deptht(x
(h)
j ) = min{deptht(x(z)j )|x(z)j is a variable xj occurring in the zth

order of t (from the left)}

= m.

Then seqt(x
(h)
j ) = (k1, k2, ..., km) where k1 ∈ I3 and k2, ..., km ∈ {1, 2, ..., n}

and we get x
(h)
j ∈ var(σ2

t ). Fix x
(h,p)
j is a variable x

(h)
j occurring in the pth
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order of σ2
t (from the left) where

depthσ
2
t (x

(h,p)
j ) = min{depthσ

2
t (x

(h,q)
j )|x(h,q)j is a variable x

(h)
j occurring

in the qthorder of σ2
t (from the left)}

= min{depthσ
2
t (x

(s)
j )|x(s)j is a variable xj occurring in the

sthorder of σ2
t (from the left)}.

By Theorem 2.11, we have xk1 , xk2 , ..., xkm ∈ var(t). By Proposition 2.5

and k1 /∈ I2, we have xk1 /∈ {ti|i ∈ I2}. So xk1 ∈ var(tl) for some l ∈ I3,

i.e. deptht(xrk1) ≥ 2 for all r ∈ N such that xrk1 is a variable xk1 occurring

in the rth order of t (from the left). By Theorem 2.11,

depthσ
2
t (x

(h,p)
j ) = deptht(xr1k1) + deptht(xr2k2) + ...+ deptht(xrmkm)

≥ 2 + (m− 1)

> m

where deptht(xriki) is a variable xki occurring in the rthi order of t (from the

left) for all i ∈ {1, ...,m}. Hence

m < depthσ
2
t (x

(h,p)
j )

≤ min{depthσs◦Gσ2
t (x

(s)
j )|x(s)j is a variable xj occurring in the sth

order of σs ◦G σ2
t (from the left)},

which contradicts to σt = σs◦Gσ2
t . Therefore σt is not a left regular element

in HypG(n). Similarly, if I1 = ∅ or I2 = ∅, then σt is not a left regular

element in HypG(n).

Theorem 2.13. CR(HypG(n)) is the set of all left regular elements in

HypG(n).

Proof. By Corollary 2.6 and by Theorem 2.12.
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Theorem 2.14. CR(HypG(n)) is the set of all right regular elements in

HypG(n).

Proof. By Corollary 2.8 and by Theorem 2.10.

Theorem 2.15. Let ∅ 6= I ⊂ {1, . . . , n}. Then (MCR)HypG(n) and

(MCR1)HypG(n)∪ (MCRI)HypG(n) are all

maximal left regular and all maximal right regular submonoids of HypG(n).

Proof. By Theorem 2.13, Theorem 2.14 and[7].

3. Conclusion

In this paper, we conclude that the set of all completely regular ele-

ments, the set of all left regular elements and the set of all right regular

elements of the monoid of all generalized hypersubstitutions of type τ = (n)

are the same. In semigroup theory, we know that the set of all completely

regular elements is a subset of the set all intra-regular elements. A. Boon-

mee [3] showed that the set of all completely regular elements and the set

of all intra-regular elements of the monoid of all generalized hypersubstitu-

tions of type τ = (n) are the same.

It follows that, completely regular, left regular, right regular and intra-

regular of the monoid of all generalized hypersubstitutions of type τ = (n)

are all equivalent. Moreover, we have (MCR)HypG(n) and (MCR1)HypG(n)∪

(MCRI)HypG(n) where ∅ 6= I ⊂ {1, ..., n} are all maximal completely regu-

lar (left regular, right regular and intra-regular) submonoids of the monoids

of all generalized hypersubstitutions of type τ = (n).
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